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LETTER TO THE EDITOR 

Zero beta function for a model of diffusion in potential 
random field 

J Honkonent, Yu M Pis’makS and A N Vasil’evt 
t NORDITA, Blegdamsvej 17, 2100 Copenhagen 0, Denmark 
$ Department of Theoretical Physics, State University of Leningrad, Ul’yanovskaya 1,  
Staryi Petergof, 198904 Leningrad, USSR 

Received 1 June 1988 

Abstract. A rigorous perturbative proof is given of both the renormalisability of the 
field-theoretic model of diffusion in potential random field, and the triviality of the 
renormalisation group beta function. 

We consider the following stochastic problem of a random walk [ l ,  21: 

= F m ( x )  + v m  x m  = x m ( t )  T m  = T m ( t )  

with given drift (velocity) field Fm(x) and Gaussian noise 7 with zero mean and 
correlation function T,(f)q,(fr)  = 2D06(tr-  t)6,,,  where Do is the diffusion coefficient 
(all parameters shall be renormalised, symbols with the subscript zero refer to their 
bare values, and symbols without this subscript to their renormalised values). The 
distribution function P ( x ,  t )  for t > 0 and arbitrary initial conditions satisfies the 
Fokker-Planck equation 

[d,+d,(F, - D o d , ) ] P =  L P = O .  (1) 

We are interested in the retarded Green function L-’ of this equation. It is convenient 
to exclude the variable t by a Fourier transformation: 

G, = L,’ L,=-iw+V(F-DoV). ( 2 )  

We express the drift field F, as a sum of a fixed external part F‘,“‘ and a random part 
F ;  with a Gaussian distribution with zero mean and the correlation function 

where d is the space dimensionality and P are the projection operators: 

P i n ( k ) = 6 , ,  - k m k , / k 2  P!, , ,(k)= k ,k , /k2 .  (4) 

The quantities ho in (3) are non-negative constants, which for A t  = Ai( correspond to 
an isotropic correlation function, and for A!=O, A t  = O  to purely transverse and 
longitudinal correlation functions, respectively (models I, 11, and I11 of [ 2 ] ) .  
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In the present letter we consider the case of purely longitudinal drift A t  = O .  In 
this case the drift field F,(x)  is proportional to the gradient of a 'potential' O(x), and 
if we want to have for (1)  a stationary solution 

p ( x )  = exp(-@(x)/ To) e(x) = eext(X)+ est(x) ( 5 )  

with a given temperature To, we must set 

Fm(x)=-DodmB(x)/To. 

As Ocxt(x) we choose a linear function of the coordinate, setting 

eext(x)/ T~ = E ~ , X ,  e%)/ To = * ( X I  

where the fixed arbitrary vector Eo, determines the external (non-random) drift 
F z t =  -DOEOm, and $(x) the random component of the drift F: = -Doam$. For the 
Fourier transform of the correlation function D+o(x, x') = ($(x)$(x')) in the longi- 
tudinal case A t  = 0 we obtain from (3) 

D+o(k) = go/ k2  go = h I/ 0:. ( 6 )  

To average the Green function (2) G, over the random field $ with the corresponding 
weight 

exp( -! $D;:$) = exp(-!- 2go $V2$) (7)  

(integral over x in the exponent here and in other analogous formulae is implied), we 
use the functional integral representation: 

G,(x, x') = det L, D$Dcpcp(x)$(x') exp(-$L,cp). (8) J 
Equations (7) and (8) lead to a field theory with the action 

S = -f$D$h$+$[mo+V(V+ E0+V$)]v  (9) 

where we have scaled the fields (o and + so that mo = iu/ Do, and omitted the term 
Tr In L,. The only effect of this term is to cancel graphs with closed loops of the cp@ 
propagator, and we shall neglect the contribution of such graphs by convention. The 
averaged Green function (G,) is simply related to the full cp+ propagator G of the 
field theory (9): Do(G,) = G. 

Canonical dimensions dA of the quantities A in the action (9) are 

d, + d+ = d - 2  d+=O d W = 2  dEo= 1 d,  = 2 - d. 

Thus, the model is logarithmic (i.e. the bare coupling constant go is dimensionless) at 
d = 2, and we shall introduce dimensional regularisation by the shift d = 2 - E. Ultra- 
violet (uv) divergences of the logarithmic theory appear in the form of poles in E and 
they are removed in the standard fashion with the help of necessary counterterms. 
These are added not to the action (9), but to the basic action: 

SB = - f $Ds' $ + +[ m + V (  V + E + V$)]cp (10) 

D d k )  = gCLE/k2 (11) 

where 
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and p is the scaling parameter ( d ,  = l ) ,  and m, E, g are the renormalised parameters 
of the model. The renormalised coupling constant g is dimensionless: dg = 0, whereas 
d,  = 2  and dE = 1. 

The counterterms are determined from the structure of interaction 

Sint = 6v ( v  $!IQ ) = -v 6 v *rp (12) 

(integration by parts has been used in the implicit integral over x) and from the 
dimensions of one-particle-irreducible   PI) Green functions of the basic theory at 
E = 0. All the fields 6, Q, 4 are dimensionless at d = 2, and therefore the canonical 
dimension of any  PI Green function in the momentum space (the ‘formal’ uv index) 
is equal to 2, while the ‘real’ uv index 6’ [3] is given by 

6 ’ = 2 ’ -  N + -  N* (13) 

where N6 and N* are the numbers of external legs of the fields 6,  i,b in the  PI Green 
function. From (12) it is obvious that for each external leg of 6 and 4 in a given I P I  

graph external momenta corresponding to the derivatives in (12) factorise, thus lowering 
the dimension of the remaining loop integral. From (12) and (13) it follows that in 
the generic case the counterterms 

6 V 2 Q  + V ( E Q )  6 V  ( V  *Q 1 Q V ~ Q V ~  (14) 

should be added to the action of the basic theory in order to remove divergences (poles 
in E = 2 - d ) .  The counterterm + V 2 4  is also permitted by dimensional considerations. 
However, the propagator i,b+ is not renormalised at all due to absence of graphs with 
loops of the rp+ propagator. The first three counterterms in (14) have the same 
structure as terms in the initial action (9). Provided the fourth counterterm in (14) is 
absent, addition of the first three to the basic action would lead to a renormalised 
action of the form 

(15) 

where Zi are the renormalisation constants (series in g and l / ~ ) .  The functionals (9) 
and (15 )  are related in the standard way of multiplicatively renormalised theory: 

SR = - +b + 6 [ m + V ( Z ,  V + 2, E + Z,V $)I rp 

SR(Q,  $9 $’) = s ( z p Q ,  z& 2 ~ s )  (16) 

ma = mZ, Eo = EZE go = gpEZg. (17) 

zmz; = z’,z,’ = 1 ZI = zz, z z  = ZtZE z, = zz,z*. (18) 

and 

From (15)-(17) it follows 

Now we may explicitly formulate the main conjectures of this paper: (i)  Z ,  = Z , ,  (i i)  
Z s = Z 2  and ( i i i )  the last counterterm in (14) is indeed absent, i.e. the model is 
multiplicatively renormalisable. From (i), (ii) and (18) we obtain 

ZE = = z g  = 1 

and 2, = 1 renders the renormalisation group p function trivial: p ( g )  = -Eg. 
The relation Z , = Z ,  may be obtained by a simple graphical analysis [4] but 

conjectures (i)  and ( i i i )  are not trivial. They have been checked to two-loop order in 
[21. The authors of [4] claim to have given a general proof in the following way: in 
formula ( 5 )  the factor exp(-O‘”‘(x)/ To) = exp( -+bcxt(x)) obviously is not affected by 
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averaging over + = Os'/ To. Thus, according to the authors of [4], the quantity +'"'(x) 
is not renormalised, which in the case of +'"'(x) = Eo,x, would mean that the parameter 
E is not renormalised, i.e. 2, = 1 e2, = 2,. However, this is actually not a proof, 
since it is not the quantity ( 5 )  which is averaged over the random field, but the Green 
function (8), from which the contribution of +""' cannot be extracted (contrary to ( 5 ) )  
as a multiplier. If the dependence of G, on +'"I has been simple, then the proof of 
the required relation Z, = 2, would, of course, have become trivial. However, this is 
not the case; therefore the authors of [4], having put forward a conjecture, failed to 
prove it. 

A different recent approach [SI to this problem is based on a connection of the 
action (15) to a non-linear U model. However, this treatment involves a non-linear 
transformation of fields; therefore the properties of the (T model cannot be directly 
transferred to the initial diffusion model. Since the analysis of this relation has not 
been presented, we consider it an open question, whether or not this approach leads 
to an alternative correct proof of the conjectures (i), (ii) and (5). 

The contributions to the counterterms (14) are extracted from the following I P I  

Green functions of the basic theory: r+?, r+,, and rGiVPa. By definition, r+,+ = -G-', 
where G is the full 506 propagator. In all graphs corresponding to these  PI Green 
functions, momenta flowing to external 6 and + legs may be factorised, and the 
remaining loop integrals are either linearly (r+?) or logarithmically (T,,,, r++vp) 
divergent in the logarithmic theory ( d  = 2). Therefore the primitive divergences (i.e. 
divergences remaining after subtraction of the contributions of divergent subgraphs) 
of these Green functions have the following structures: 

(19) 

(20) 

(21) 

KR'r+ , (  p )  = - p (  C , p  - C,iE) 

KR'TG,,(q, -4 - k, k )  = C3qk 

KRtr++vv(q ,  91, P, -P - 4 - 4' )  = c4qqr 

where KR'T denotes the primitively divergent part of the diagrammatic representation 
of the function T, and the external momenta flowing into the graphs are indicated in 
the order of the field arguments. C, are dimensionless coefficients, which diverge in 
the limit E + 0 (series in g with polynomial in 1 / ~  coefficients in the standard scheme 
of minimal subtractions). We want to prove that to arbitrary order in the perturbation 
theory the following relations hold: 

c2 = c, c 3 =  c2 C4=0. (22) 

These three equations correspond to our three main conjectures. Since C ,  do not 
depend on the parameter m (as well as on any other dimensional parameter), we 
henceforth set m = 0. 

To prove relations (22), we introduce the change of variables 

d x )  + d X >  exp(-+(x)) 

SB = -$pi'++ Cp(V - V $ ) ( V + E ) ( p  

G(x -x ' )  = ( exp( -W))  T(x ,  x') exp(+(x'))> 

@(XI-, 6b) exp(+(x)) 

which leads to a field theory with the basic action ( m  = 0) 

(23) 

and for the full propagator of the initial model (10) we obtain the expression 

(24) 
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where angular brackets denote the average over t,b, and the quantity T(x,  x’) is defined 
as 

T(x, x‘) = G ~ ( x  - x‘) - Go[V+(V + E )  G~](x, x’) + Go[VJ/(V + E )  G~]*(x, x‘) + . . . (25) 

or, graphically, as 

T =  - --+A +.... (26) 

Here, full lines denote the bare propagator Go of the basic theory 

crosses denote the operator V + E, truncated broken lines denote t,b fields and the slash 
on them corresponds to the derivative at the interaction vertex of the basic action (23). 
The crucial property of expression ( 2 5 )  is that, apart from the common factor Go on 
the left, Go appears only in the combination 

(V+E)G,(x-x‘ )=i  exp [ip(x - x‘)] 

where the quantity ( p  - iE)/p(p - iE)  does not diverge in the limit p +. iE. The effect 
of the exponential factors in (24) may be expressed in the form of ‘external’ vertices 
with an arbitrary number of 9 fields, which are attached to both ends of the Go chains 
in the expansion (26). The the average over t,b graphically amounts to connecting both 
the ‘normal’ vertices in (26) and the ‘external’ ones by broken lines corresponding to 
the propagator D,(k) = g p F / k 2 .  In graphs, where the leftmost propagator Go(p) = 
l /p( p - iE)  is included in a loop of full and broken lines, the loop integral smears 
the pole at p = iE. The pole survives only in graphs, where this propagator is left 
outside of all the loops. Thus, the Fourier transform of G(x - x’) may be expressed 
in the form 

where R and 6 do not diverge in the limit p + iE. Due to the relation G = -rib this 
means that 

rdplm=O,p=iE =o. (29) 

This equation holds also for the primitively divergent part of rdpr and taking into 
account (19) we obtain C ,  = C2. The relation (29) is interesting also from a slightly 
more general point of view. In field theory, the set of solutions cpo of the free equation 
G;’cpo=O is usually called the ‘mass shell’. For the propagator (27) the equation 
p (  p - iE)cpo( p )  = 0 has a solution cpo( p )  a S( p - iE) ,  which in the coordinate space 
corresponds to the stationary Boltzmann distribution cpo(x) CC exp( -Ex)  in a given 
external potential Oext(x) = To(&). Equation (29) means that interaction with the 
random field t,b does not shift the mass shell. This is a non-trivial property of this 
particular model, since in general interaction always results in a shift of the mass shell 
(mass renormalisation in field theories). 

For the full three-point function Gw+, we obtain the expression 

GV&, x’, Y)  = (exp(-+(x)) T(x ,  4 exP($(x’))t,b(Y)) 
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and the properties of T allow us to present the Fourier transform of G,++ as 

where G3 does not diverge in the limit p+iE. Using the connection 

r&,(P - k ,  -P, k )  = -r+& - k ) G a d + ( P  - k, -P, k ) r G , ( P F + + ( k )  

(where r++ = -Di’ due to the absence of fluctuation corrections) we obtain from (28) 
and (30) in the limit p + i E  

(31) r,,,( - k  + iE, -iE, k )  = rG,( -k + iE) 

which, with the use of (19), (20) and (29) leads to the relation C2 = C3, 
The full four-point function gVvGG may be expressed as 

 go,^&, Y ,  x’, Y ‘ )  = (exp( - - J , ( Y ) )  

x (T(x, x’) T(Y, Y ‘ )  + T(x, Y ’ )  T (Y ,  x’)) exp(J,(x’) + J , ( Y ’ ) ) ) .  

Analogously, we can extract the most singular part of the Fourier transform of G,+ 
in the limit p,p‘+iE, where p and p ’  are the momenta, flowing from the external + 
legs of the corresponding graphs. This part is given by graphs, where the broken lines 
connect the left ends of the two T lines with each other only (but not with any other 
vertices). Therefore 

where . . . denotes less singular terms, and the quantity B is defined by a series of J, 
propagators ( 1  1 )  as follows: 

Using again the relation between full and I P I  Green functions we obtain from (28), 
(31) and (32) 

rGG& +iE, - k  +iE, -iE, -iE) = 2 T G , ( k + i E ) [ B ( k )  - D+(k)]F, , ( -k  +iE) .  

This relation shows that the four-point function does not contain terms with the required 
local structure (21), which means that there are no promitive divergences and C, = 0. 

Finally, we show that our proof applies also to the model of diffusion with 
‘long-range’ correlated random drift [ 5 , 6 ] .  In this case, the correlation function of 
the random field Fst is of the form 

where CY > 0 is a new parameter, and projection operators P are defined by (4). In the 
potential case, the correlation function ( 6 )  D,, is replaced by 

D,O(k) = g0 /k2” .  

Due to this, the corresponding field theory is logarithmic at d = 2+  2a dimensions. 
However, there are no other changes in the model, and for our argument the explicit 
form of the J, propagator is not essential. Therefore, our proof remains valid also for 
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‘long-range’ correlated potential drift. In fact, the conjecture (iii) becomes trivial in 
this case, since the real uv index of I P I  Green functions is given by 

8’ = 2 + 2 CY - N+ ( 1 + 2 CY ) - NG 

which is negative for N+ = 2, NG = 0. Thus, the four-point term (14) may be excluded 
by dimensional arguments. 

We would like to thank J P Bouchaud, A Comtet, A Georges and P Le Doussal for 
useful correspondence. 
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